

Visual Access for Blind
People (B.E.L.T.S)

ELEC95012 EE2 Electronics Design Project

Electrical & Electronic Engineering, Imperial College London

Group 7 – Dr. Thomas J. Clarke

Issa Bqain

Umut Ekinci

Pavan Singh Gill

Arman Fidanoglu

Alp Atakav

Xia Chen Hao

Omar Inuwa

Lukas Baliunas

CID: 01503843

CID: 01486809

CID: 01481616

CID: 01512561

CID: 01523868

CID: 01249695

CID: 01187586

CID: 01352301

Submission Date: 27th March 2020 (GMT)

Page 2

Contents Page | Group 2 Engineering Design Project

Abstract Page 3

Part 1 Introduction: Background on the Visual Access System
1.1 Problem Statement Page 3
1.2 Rationale Page 3
1.3 Competitors Page 4
1.4 System Overview Page 4

Part 2 Design Criteria: Design Specifications of the Project
2.1 Performance Page 5
2.2 Target Product Cost Page 5
2.3 Ergonomics Page 5
2.4 Size, Shape & Weight Page 5

Part 3 Hardware Concept Design and Critical Analysis
3.1 Performance (Hardware) Page 5
 3.1.1 Mechanical Design Page 5
 3.1.2 Choice of Motors Page 5
 3.1.3 Choice of Transport Mechanism Page 5
 3.1.4 General Internal Electronic Design Page 8
 3.1.5 Sensing of Element gets to end of strips Page 8
3.2 Ergonomic Design Page 10
3.3 Size, Shape and Weight (Portability) Page 11
 3.3.1 Physical Dimensions and Weight Page 11
 3.3.2 Battery Portability (Power Supply) Page 11

Part 4 Software: Development of Device & PC Interface
4.1 Software Implementation: User Application Page 12
 4.1.1 Criteria Page 12
 4.1.2 Design Page 12
4.2 Parser Implementation: User Application Page 13
 4.2.1 Manually Written Expressions Page 13
 4.2.2 Using a Parser Page 13
4.3 Uploading a Sketch (to the Microcontroller) Page 14
4.4 Software Implementation of the Microcontroller Page 17
 4.4.1 Moving the Servos Page 17
 4.4.2 Resetting the Servos (to original starting point) Page 18
 4.4.3 Calibration Page 19

Part 5 Project Management
5.1 Organisation of Work Page 21
5.2 Cost and Budget Page 21
5.3 Future Work Page 21
5.4 Conclusion Page 22

Part 6 References Page 23

Part 7 Appendix
 Final (and older Prototypes) Device Pictures Page 25
 Gear and Rod Design Page 28
 Extra Software and Calibration Notes Page 28
 Budget Sheet Exports and Gantt Charts Page 31

Page 3

Abstract

Simple visual-based tasks, such as plotting and understanding graphs often prove difficult for the visually
impaired, limiting their educational prospects and contributing to high unemployment rates [1] among the
blind. On top of that, blind-related technology currently available for sale also does not address this issue
directly, leaving an empty niche on the market.

Our project seeks to solve this by introducing a novel mechanical touch interface that allows them to
directly feel and understand any possible line graph (e.g. mathematical functions, statistics, charts), when
connected to a personal device. The input is fed into the mechanical interface via the text-to-speech front-
end software and translated into a function, which is then plotted and displayed on the interface through
linear displacements of physical dots.

The prototype development spanned over two months, with the hardware and software team actively
working together to develop the structure, mechanism and circuits, along with the user interface and
control system for the device. The first month saw plenty of experimentation with various mechanisms
ranging from sliding brackets to conveyor belts, with the latter being eventually chosen due to its
compactness. Development of microcontroller and front-end code also took place concurrently. The
prototype was then built, tested and calibrated. Results show that the prototype is successful, being able
to display various types of curves (sine, Gaussian, parabola) with adjustable step sizes and window which
can be easily felt by touch.

1 Introduction: Background on the Visual Access System

1.1 Problem Statement

Visually impaired people often suffer from limited education and job prospects due to their inability to
interpret non-verbal information that can only be transmitted visually, such as text and images.

Since young, the lack of tools to properly learn visual based subjects such as STEM and Economics in
schools have led to a high dropout rate (up to 50%) [2] in the United States. This often progresses into high
unemployment rates during adulthood, with most jobs from accountancy to economics and engineering all
requiring the regular use of graphics (e.g. schematics, graphs, charts). As reported by the Royal National
Institute of the Blind, only 27% [3] of visually impaired people of working age in the UK are in
employment, with 39& expressing great difficulty in making ends meet.

Even in their everyday lives, basic needs like viewing stock charts and statistics to independently
understand and navigate the world around them are often near impossible feats. As a result, they are
often unable to fulfil their true potential in society and find it near impossible to make a living, or even
survive independently. It was also estimated by the World Health Organization that there are 285 million
visually impaired people worldwide, with 90% living in developing countries [4]. The number is also set to
increase as the population ages, indicating a huge demand for an affordable solution.

1.2 Rationale

In view of all these issues, the project therefore aims to develop a long-term affordable solution that would
help blind individuals bridge the gap caused by their visual disabilities in order to improve their education
and employment prospects while enriching their daily lives. This can be done in many ways.

While Braille has existed for centuries and modern technology such as text to speech and refreshable
Braille displays have made textual information much more accessible to the blind, they do not directly
tackle the issue of images, with the closest attempt being to verbally describe every detail of the graphic.
(e.g. image recognition apps like TapTapSee [5]).

This often leaves out several abstract characteristics which are essential for the proper understanding of
the information, presented, especially in the context of graphs and charts which often conceal essential
information (arbitrarily close points, local maxima/minima, change in gradients, points of inflexion) within
minute graphical details.

This project therefore focuses on helping blind individuals interpret images, with particular emphasis
placed on the graphs in order for our contributions to make a larger impact on the blind community.

Page 4

1.3 Competitors

Even though Braille devices and image recognition apps are commonplace on the market, there are
currently no products focusing on graphic visualization for the blind exists on the market, suggesting very
limited competition. The products listed (e.g. Refreshable Braille Display, wearable GPS [6] [7]) often serve
a completely different purpose and act more as complements to the solution we plan to develop. In
addition, the price range of these products far exceeds what most blind adults and with modest income
can afford, (2000 pounds and above), and what most blind organizations can mass purchase, meaning that
most of its target audience who live in poverty have not been benefitting from them.

All these indicate huge developmental and marketing potential for an affordable product that could
directly address both issues.

1.4 System Overview

The initial chosen idea was as follows:

Output for sine wave input: When a user inputs a graph into the computer, it is translated into
vertical displacement signals and mapped onto the display shown above (for a sine wave). It consists of
two rows of vertical metallic strips that move up and down, with the gap between the two rows arranging
to form a hollow cavity in the middle that can be sensed through touch.

Rows of linear actuators are driven by multiple motors mounted under the strips, and are controlled by
drivers and the Arduino, which in turn receives commands from the user interface software. The
development can therefore be split into hardware (motors) and software components, with the overall
subsystem layout shown above.

Figure 2 Concept Design from Preliminary Report

Figure 1 Proposed System Schematic

Page 5

2 Design Criteria: Design Specifications of the Project

The following product design specifications are prioritized when designing the device.

2.1 Performance

Resolution - how much information the display can represent without ambiguity

Accuracy – information should be represented with little error or distortion

Versatility- Display should be able to accommodate wide variety of graphs at different scales

2.2 Target Product Cost

The device needs to be cheap to reach most of the blind community

2.3 Ergonomics

The device should be designed specifically for blind people, considering all their needs and allowing them
to use it with minimal assistance.

2.4 Size, Shape, Weight

For portability and regular use, the dimensions of the device should be around 250.6mm x 174.1mm x
7.5mm and weigh less than 1.18kg.

3 Hardware Concept Design and Critical Analysis

3.1 Performance (Hardware)

3.1.1 Mechanical Design:

The first major modification to the preliminary design shown above is the removal of the bottom half the
display, and the modification from concave sensing to convex sensing. This saves the need for half of the
motors, drastically reducing cost and space while improving ease of construction and maintenance with
little compromise in resolution. The strips themselves will now be touched instead of the gaps between
them, with the points on the graph embossed as protruding dots that can be easily felt by sliding the
entire hand across the display.

3.1.2 Choice of Motors

Servo motors were chosen over DC motors, due to higher precision and built in H-bridge. More
specifically, 360 servo motors (Feetech FS90R) are used, which allows the gears to rotate continuously at a
steady rate. This in turn allows for unlimited displacement over time. At the same time, they are also
relatively small (23.2 x 12.5 x 22mm) [8] compared to more sophisticated versions, which minimizes the
space taken up by each linear mechanism and maximises resolution, while being relatively cheap at
5.04GBP [9].

Unlike most servo motors though, they are normally controlled by time delays instead of angle. For our
application however it does not make a significant difference, and any slight misalignments can be
corrected by calibrations.

The running current is stated as 120mA with a small load at our required voltage which is feasible within
our power constraints. The Stall current is also given as 650mA [8] which will come in useful when using
this as a sense to know when the device reaches the end of a strip. It is also lightweight at 10g which
makes using a large amount lightweight which is pinnacle for a portable device.

3.1.3 Choice of Transport Mechanism

The task at hand was to develop a mechanism for the linear actuators that is effective, durable and easy
to replicate. It should also be as small as possible for maximum resolution.

Page 6

(1) Initial Rack and Pinon Transport Mechanism

Initially, the rack and pinion design were explored, and it was the closest design to the concept
illustration. The first variation of the idea came from an open source model by YouTuber Potent Printable
[10], shown in figure 3. The simple mechanism consisting of gear strips
with gears placed vertically inside a motor bracket.

The proposed design was to have a set of the mechanism on the top
and bottom separated by a small gap as shown. The strips
themselves will then be mounted to and slide along with the gear
tracks. The design however had noticeable flaws when used in the
graphical application. The distance between each rack in series due
to the protrusion of the motors created a sense of discontinuity in
the graphs, and it is difficult to mount strips on the gear tracks
themselves.

(2) Improved Rack and Pinion

This led to the second variation of the mechanism.
This time the servos would be placed under a new
version of the rack, shown in Figure 4. which would
allow for the racks to be closer together removing
sense of discontinuity. The plot points would then
be embossed on top of the bracket to enable.

The slot cut out in figure 4 was designed to house
the servo motor and the top piece was designed to
have teeth at its inner side for the gear to bite onto
it; moving it horizontally. The other rail without
teeth holds it in place, preventing uncontrolled rotations and
vibrations. The top piece design had a noticeable semicircle
depression that ran through its length, which was designed to
accommodate the height of the screw head, and also allowed for the
screw head to further act as a guide for the rack to slide. Initial
testing suggested that the mechanism works, but the design leads to
inefficient use of space when replicated and scaled, since the bracket
extends to twice the length of the display, which could easily exceed
the size requirement.

On top of that, the resolution is still limited by the width of the
servo motors, as the brackets needs to be wider than the motors
themselves. This leads to our final design.

The final variation of the design was influenced by the old
typewriters' designs shown in Figure 5. The idea was to use make use of strips that would connect to a
rack in the first variation at different angles. This would improve the resolution at a system level due to
its ability to eliminate gaps between each strip, with the width of the motor no longer limiting its
resolution.

However, it similarly suffers from the same problem of inefficient use of space due to need for extensions.
On top of that, due to wide variety of precise, oddly shaped mechanical components required for each
motor, it is extremely difficult to build and maintain, and would likely lead to multiple misalignment
errors.

(3) GT2 Timing Belts (Modular Strip Design)

The belts idea was explored as a better alternative to strip representations.
It was inspired by conveyor belts arranged in columns as shown in Figure
6. Each belt would have a dot, which represented a coordinate point and
together form a graph. This has the distinct advantage of being extremely
compact and modular, with little additional space used beyond the display
itself. The idea was changed to having the belts on its side with a clip
attached to it to represent physical points instead of a strip as shown in
the Figure 7.

Figure 3 Initial Rack and Pinion Design
with gear (Right)

Figure 4 Rendered 3D files of the second variation of the Rack
and Pinion mechanism

Figure 5 Picture of typewriter mechanism
[21]

Figure 6 Inspiration from
Conveyor Belts [22]

Page 7

The inspiration for the design of the gears were taken from the existing 3D printers
gears which control the movement of durable belts to change the coordinates of the
nozzle, shown in Figure 8.

The gear was design to mimic that of a 3D printer gear and it was also designed to be
printed with no supports, hence it was split into two parts the gear and the lid with an
inter-locking mechanism shown in figure 9.

Both the lid and the gear has different diameter openings which allows it to be dual
purposed. The smaller diameter allows for it to be screwed into the servo and the
larger opening allows it to freely rotate on the rod. The rod is design to have four
screw points a T shaped base for support to withstand the tension exerted by the
tighten belt.

The rod additionally has a fillet transition between the protruding surface and the T
shaped base, to add some rigidity to the design as seen in figure 10.

The Prototype was further refined to have supports and was made into a modular design shown in Figure
11. Each modular piece would be placed slide by slide to form a chain of belt systems shown in Figure 12.

The row of modules were placed into a case made of wood to keep them in place as was used as the initial
debug unit to develop software shown in figure 13.

(4) GT2 Timing Belts (Single Middle Plate Design)

After a successful test with the modular system the team decided to move away from a modular design, as
it introduces too many variations on the surface and may cause confusion to blind users and instead
adopted a three-tier layer, simpler design shown in the final design in 15 and an early product design in
Figure 14. We also increased from 10 strips to 23 as this was required to have a higher resolution and was
evident from the testing we did from the 10 modular strips we built (seen in Figure 13)

The middle plate of the device house all the circuits and mechanism that allowed the device to function
shown in Figure 16.

The middle plate was also design with extended slides to prevent any caving in on the sides of the device.

Figure 10 Concept Proof of Belt Design Figure 8 3D Printer Belt (GT2) by
Blu Siber [23]

Figure 11 Custom
Designed gear and

Pulley in two pieces

Figure 7 Custom
Designed 'T' Design

shaft

Figure 9 (Left) Initial Concept Design in
wood. (Right) Refined Strip in Plastic

Figure 12 10 quantities of refined plastic design Figure 13 Initial Debug Unit in Wood case

Figure 14 Early Wooden
Prototype Design

Figure 16 Final Refined Simpler Design
(Black)

Figure 15 (Left) Middle plate exposed, (Right)
AutoCAD File

Page 8

3.1.4 General Internal Electronic Design:

The internal system needs to withstand a large number of
components with different current and switching
demands. The device also needed to meet the standard of
being portable and not restricted to an AC adapter.

For this reason, a battery pack was utilised in order to
supply the motors and control circuitry with power. In
order to implement easy serviceability, the battery pack
was made removable with a slide-in battery slot on the
side of the device (see appendices for more images).

The battery then connected to a Power distribution board that
separated out power lines for all the different components in the
system. This included the Adafruit Motor controller and all the servos.
The USB connection and power to the Arduino however were not
shared with the battery supply as this caused a ground loop issue from
the PC supply. The PC ground potential had to be included in the
USB connection as the data lines are with reference to the ground of
the PC and hence is required.

A USB and charging port input were made available to the exterior of
the casing. This enabled a standard USB cable to be used to connect to a
computer. This cable included all the Power (+5V and GND) and data lines
needed from the PC. This port acted as the interface to communicate with the
device.

A disadvantage of the system however is that the current supplied to the system
is limited. We are limited to what the Power Supply (in this case the battery)
can supply which is approximately 2A. Therefore, running the motors all at once
would consume up to 4A which would not be feasible at this stage and add
unnecessary complications to the software. In the end, a decision was made to
move only one servo at a time in order to meet this power constraint. If the
project were to be done again, a better high-performance battery system would
be installed to speed up the device updating the diagram displayed.

3.1.5 Sensing when the elements reached the end of the strip:

Since the motors gear and pulley were made out of plastic, it was not advisable to keep running the
motors when they reached the end of the strip as this was where most of the stress would be inhibited by
the mechanism and therefore increase possible wear and tear.

To rectify this problem, there needed to be a way to sense when the elements reach the end of the strips.
At first, an idea of using contact switches was advised which would make sure all 23 elements had contact
switches implemented at the end of each strip. This,
however, was unnecessarily complicated as it would
need a way of communicating a 23-bit value. Another
solution of utilising a weighted adder and converting
these logic levels to an analogue waveform was
abandoned due to the sheer complexity required.

The solution we settled on was inserting a resistor in
series with the positive 5V rail of all the servo
motors. When a motor hits the end of the rail, the
current required by it jumps suddenly to a much
higher level. From this, we can use the sense resistor
to pick a proportional voltage and when we reach a
threshold voltage on this resistor, we know it must
have reached the end.

Figure 17 Back Panel removed to expose electronics

Figure 18 Internal Power Distribution
Board (including sense resistors)

Figure 19 USB and
Charging Ports

Figure 20 Waveform just after an element hits the end of the
strip.

Page 9

The datasheet of the motors states that this stall current is somewhere in the range of 550mA to 650mA
[8]. The sense resistors were placed internally in the power distribution board. A small resistance needs to

be used such that it doesn’t result in a large power loss or dip in voltage to the servo power supply,
however needs to be high enough to produce distinguishable sense voltages, hence a resistance of

approximately 1 Ω is used. You can see from figure 20 that the voltage across the sense resistor (in this

case 1 Ω) is approximately 300mV when the servo is moving normally. When it reaches the end, the
current spikes and, as shown, the voltage jumps from the nominal 300mV to approximately 800mV. We
set a threshold of approximately 700mV (or using the lowest voltage of all the servos) and by reading the
voltage across the sense resistor (using two pins into an analogue read pin), we can deduce when they
have reached the end.

An advantage of using this method enables only 2 wires (potential from each end of the sense resistor) to
be used rather than 23 wires (or 46 if we decide to sense both edges of the strip). This method enables us
to sense both the upper and lower limits of the strip as due to the current-spike caused by the servos
loading.

Drawbacks and Improvements: The method
used is sometimes temperamental and requires
calibrations and can become unreliable.

Figure 21 shows Figure 20 zoomed in. You can see
small pulses in the waveform. This is due to the
fact that the PWM signal sent to the servos cause
the power to turn off and on due to the duty cycle.
This in turn causes the current through the sense

resistor to suddenly become 0 and then back to it’s
nominal (or maximum) voltage.

Another issue we encountered is the fact that the
threshold voltage changes from time to time.
These issues are addressed in the software
development (section 4.4.2) in more depth
however we will go through some possible
solutions here.

A hardware approach can be taken to solve these issues. One possible way is to introduce a comparator
with a feedback mechanism (such as a thermistor) that considers the changes caused by the intolerances
and, consequently, removes any of the variations present in the sense signal. While this would work, it
would cause unnecessary complexity in developing new control circuitry for a small part of this project.

To remove the PWM variations, you could use a low-pass filter (similar to a debouncing circuit) to
remove the sudden jumps to 0V. This would work however, the system could become unstable if a large
number of strips were close to the edge, it would result in the consecutive current spikes becoming filtered
out and eventually the system skips one or two strips.

As you can see, there is no perfect solution, along with the fact that the threshold constantly changes, a
more optimum solution is required. From our prototype testing, we had concluded that a hardware
solution for such an issue is not efficient and have settled on a software solution instead.

Possible software solutions and the chosen method is detailed in section 4.4.2.

Figure 21 Waveform just after an element hits the end of the
strip.

Page 10

3.2 Ergonomic Design

Careful consideration when into the design of the
device to include braille elements for ease of
interaction with the blind student, enabling
them to interact with the device more
independently and being more comfortable with
the device. The location of the braille elements
where based on drug labels for blind individuals,
where the elements where place in a vertical
manner on the sides. A reset button was also
added to enable the user to reset the device to

its starting position. This is connected to the
reset pin of the microcontroller.

The top of the device also has a braille element beside the reset button to allow the user to reset the
device easily. (shown in Figure 24)

The Design of the clips had been
made to be more rounded to create a
more continuous feeling when the
user runs their hands across the
device to interpret the graphs, shown
in figure 23

The overall look and feel of the device were made as such to remove any unnecessary corners, this resulted
in a smooth curvy design with flushed edges. In addition, screws were carefully selected to have rounded
heads to prevent any cuts due to flat and sharp protrusions.

Figure 22 Engraved Braille Elements

Figure 24 Braille Indentation for Reset
Button

Figure 23 Smooth Interface for ergonomic
interactions

Figure 25 Final Device from the Side

Page 11

3.3 Size, Shape and Weight (Portability)

3.3.1 Physical Dimensions and Weight:

The device has dimensions of 390mm x 210mm x 70mm (see figure 25). The length and width of the
device fall within that of a laptop. The device weighs 1.8 kg. And the device can be carried in a haversack.
Its shape comprises of rounded sides with flushed edges and a level top and bottom. The device can, as a
result, be easy transported and used like a laptop computer in that regard.

3.3.2 Battery Portability (Power Supply):

Prior to choosing to use the device remotely, a 20W barrel connection adapter was going to be used,
however, given this device could be used in classrooms and other remote locations without access to the
mains, we decided to use a power source. In order to make the device as lightweight as possible, we
avoided using bulky battery packs such as lead acid batteries. This narrowed the option down to using
small Alkaline batteries or rechargeable batteries. To match our design specification, reduce environmental
waste and increase the products life span and ease of use; rechargeable batteries was deemed to be a better
option. Looking at the datasheets for the components, the power consumption of the system could be
estimated.

Component Voltage/V Current/A

Driver circuit x2 0.5 0.2

Arduino 5 1

Servo motor x23 5 0.2

Since we are only using one servo at a time, this reduces the power consumption of the device at any one
time. Hence, a 5V/3A power source would suffice.

There are a large variety of rechargeable batteries that could be used. For example, Lithium-ion 18650
batteries are commonly used to projects such as this as they are small and compact (slightly larger than
AA batteries) while offering up to 3.7V and 2.15Ah. However, using these could lead to charge
distribution and discharge issues. Therefore, using a battery pack at a set rating with circuit protection
was chosen to overcome this issue.

Page 12

4 Software: Development of Device – PC Interface

4.1 Software Implementation: User Application

4.1.1 Criteria

The purpose of the user application is to provide the people assisting the visual impaired the ability to select
a graph they want to plot and upload it to the device. The interface was required to have the following
functionality:

• Ability for user to enter a formula for a graph

• Ability for user to choose the mathematical distance between each point (step size)

• Preview image of the expected output of the device

• Upload the selection to the device

Subject to the functionality, the design criteria for the development of the user interface was chosen:

• Cross-platform (ability to run on different operating systems – Windows, Mac, Linux/Ubuntu)

• Intuitive to use

• Minimalist design

• Different mathematical formulae support

• Possibility of future improvement

Due to the design criteria mentioned and the skills of the team’s software developers, Electron [11] was chosen
as the framework for the app. It is an open-source framework based on Chromium [12] and NodeJS [13] for
building cross-platform desktop apps using JavaScript, HTML and CSS.

React [14] together with Material UI [15], were used as the front-end frameworks for the application. This
provided a simple component-based development process, and trusted and tested design components.

To make the development simpler and a large code base more manageable, Electron React Boilerplate [16],
which is an open-source foundation for cross-platform application development, was used. This provided the
project with structure, linting and pre-set running environments.

All the project files for the user application can be found in a public GitHub repository [17] using the following
URL: https://github.com/saucena/blind-app

4.1.2 Design

The design of the user interface, shown in figures 26
and 27 includes the following:

▪ toolbar

▪ navigation bar with the project’s name and the

upload button

▪ text fields for the formula and step size inputs

▪ preview button

▪ area for the graph to be displayed

Figure 26 User
Application Design

https://github.com/saucena/blind-app
https://github.com/saucena/blind-app

Page 13

4.2 Parser Implementation: User Application

4.2.1 Manually Written Expression

The first method of using formula inputs was to manually map each input to a specific
function and only allow a finite number predefined by the developers. This was done

using a switch statement, simplified with JavaScript’s ability to declare functions as
variables dynamically, see figure 28.

The problem with this method is that the variety of graphs available is very limited
and no mathematical transformations can be possible, such as multiplying the
dependent variable, e.g. sin(2x), cos(3x).

4.2.2 Using a Parser

The solution to the problems mentioned in the previous chapter is to use a parser that
converts the text to numerical values. Writing a proprietary parser is a very
complicated task, thus an open source library math-expression-evaluator [18] was used
to simplify this process.

This library converts expressions written in numbers and common mathematical
operations but does not understand functions with variables. Thus, extra logic was added to convert a
function with a dependent variable to an array of 23 values (the number of points in the device).

Firstly, the string is checked if it contains expressions with implied multiplication, i.e. does not contain the
multiplication sign (e.g. 2x meaning 2*x). The input string is split into substrings using x as the separator
and the substrings are checked if their last character is a number. If that is the case, a multiplication
symbol is added. The code implementation of this is shown in Code Extract 2 on page 15.

A for-loop iterates 23 times (from index -11 to 11, representing the points on the device with the middle
motor being the zero of the x-axis), each time multiplying the index by the step size and then using that
number as the separator for joining the substrings. The resulting string is then passed to the parsing
library object to give a numerical result, which is pushed into an array.

Since the Arduino code requires the values for the positions in the range of 0 – 100, the resulting array is
mapped in this range. This results in the fact that device will always draw the full shape of the graph in

the 23-point range. Hence, formulas, such as “sin(x)” and “sin(x) + 2” will look identical, because both are
identical between their minimum and maximum points. Thus, the y-axis is not of significance in the
device, just the x-axis relative to the origin and the shape and behaviour of the graph.

Figure 28 Using
Switch Statement to

manually code functions

Figure 27 User Application with
Graph Preview

Page 14

The method of replacing x with a number each iteration currently limits the functions to those defined in
math-expression-evaluator. Formulas that do not give real numbers or asymptotes are managed by not
moving the motors and keeping them at the lowest position. The available mathematical operations can be
seen in the following table. The code implementation of this is shown in Code Extract 3 on page 15.

When the user presses the Preview button, the app checks if the graph is valid. If yes, then it sends the 23
data points to Plotly [19], an API for drawing plots, which returns an image of the plot that is then
displayed in the app.

if (step > 0) {

 let tmpExpression;

 for (

 let i = -Math.floor(moduleCount / 2);

 i <= Math.floor(moduleCount / 2);

 i++

) {

 axesOutput.x.push(i * Number(step));

 if (i * Number(step) < 0) {

 tmpExpression = expSplit.join(`(${i * Number(step)})`);

 } else {

 tmpExpression = expSplit.join(i * Number(step));

 }

 let value;

 try {

 value = mexp.eval(tmpExpression);

 } catch (error) {

 console.log(error);

 axesOutput.isValid = false;

 }

 axesOutput.y.push(value);

 }

 } else axesOutput.isValid = false;

Code Extract 1 Creating the Positions Array

4.3 Uploading a Sketch

After the user Previews the graph (not required, but ensures graph is valid), he/she presses the Upload
button, which Uploads the positions of the motors to the Arduino.

The blueprint Arduino sketch is contained in the constants part of the project. Initially, the positions

array, which holds the motor destined positions, is written to equal to the string ‘INSERT_HERE’. This is
a placeholder for the code to replace with actual values. When Upload is pressed, the program reads the
blueprint as a string and replaces INSERT_HERE with the calculated values as described in the previous
part. Then a .ino file is written in the Arduino project folder with the replaced text inserted.

The sketch is compiled and uploaded using NodeJs child processes and arduino-cli [20]. Child processes
allow to run commands in the command line, and arduino-cli is a command line for managing Arduino
projects.

Page 15

Various Code Extract (See references in Texts)

// ensure 2x => 2*x

 const expression = text.replace(/ /g, '');

 let expSplit = expression.split('x');

 expSplit = expSplit.map((x, i) => {

 const lastChar = x.charAt(x.length - 1);

 const num = Number.parseInt(lastChar, 10);

 if (!isNaN(num) && i < x.length - 2) {

 x += '*';

 }

 return x;

 });

Code Extract 2 Managing Implied Multiplication

const max = Math.max(

 ...axesOutput.y.filter(

 x => !isNaN(x) && x != null && x != 'Infinity' && x != '-Infinity'

)

);

 const min = Math.min(

 ...axesOutput.y.filter(

 x => !isNaN(x) && x != null && x != 'Infinity' && x != '-Infinity'

)

);

 axesOutput.y = axesOutput.y.map(x => {

 if (isNaN(x) || x == null || x == '-Infinity' || x == 'Infinity') {

 return min;

 }

 return x;

 });

Code Extract 3 Mapping non-real points to bottom of display

Page 16

Testing with Different Inputs

The software was tested with various commonly used mathematical functions as shown above. It is generally able to
correctly display bounded (Gaussian), unbounded and shifted (x^2), periodic (sine wave) and discontinuous graphs
(sinc(x) with discontinuous point at 0), and 1/(x-0.1) with vertical asymptotes.

Testing with different Step Sizes

Increasing the step size also increases the window of the graph as the number of points remain constant at 23, which

creates a “zooming out” effect, displaying larger horizontal sections of the graph as shown. More pictures of graphs at
various step sizes are found in the appendix.

For periodic functions however, the step size needs to be adjusted with caution, with the correct output only
displayed within certain ranges. For example, for the step size of 6, sin(x) is displayed as an inverted sine wave with
period of 120, and for other step sizes it could lead to complete distortion of output shown on the left and centre:

To find the recommended step size, the display can be modelled as a discrete time sampled waveform.
According to the Nyquist sampling theorem, the sampling period must be strictly less than twice that of
the signal period for accurate representation, beyond which the graph can no longer be recovered, which
explains the distorted output.

In this case, to show one complete period of the sine wave at maximum resolution, the ideal step size
would be 2pi/23 = 0.273, with the graph displayed accurately as shown on the right above. Below that
step size the sine wave is incomplete. Further increasing the step size would lead to more cycles displayed
at lower resolution, with the recommended limit being estimated at 1.092 (see appendix).

Figure 29 (Left) Sinc(x), (Centre) 1/(x-0.1), (Right) (x-1)(x-5)

Figure 30 Gaussian plot at different h (left: h = 6, centre: h = 0.2, right: h = 0.1)

Figure 31 Sine wave plot at different h - left: h = 6, centre: h = 3, right (correct): h = 0.273

Page 17

4.4 Software Implementation of the Microcontroller (Arduino)

The Arduino script receives an array of 23
numbers from the application. These numbers are
each between 0 and 100 and correspond to
positions that the servos are required to move to
(with 0 being the minimum and 100 the maximum
values).

The servos are connected to the Arduino via two
Adafruit PWM drivers. Thus, their speed can be controlled by adjusting the duty cycle of the pulse width
modulated signal. However, the libraries for the drivers are designed specifically for 180-degree servos, which
have feedback circuits installed that allow them to be controlled by entering the angle that the user wishes
them to move to.

However, the team’s design uses 360-degree servos in order to achieve the full range of motion required by
the strip lengths. Such servos do not have feedback circuits and cannot be controlled by angle. Thus, the
library was reverse-engineered, and inputs were changed from angle values (0 to 180) to pulse width values
(0 to 4096). Constants for pulse widths that moved the servos forwards and backwards at maximum speed
and that stopped the servos were determined experimentally and used throughout the script. The constants
are defined as shown in figure 32:

4.4.1 Moving the Servos

To accommodate for the continuous servos, the positions received from the app are mapped by the script
onto durations that the servos need to be moving at maximum speed for. The script thus accurately moves
the servos to sampled graph positions by turning them on at maximum speed, waiting for the required
amount of time and then stopping them.

Initially, the team wished to move all servos at the same time. Thus, Arduino’s “delay()” function could
not be used to implement the delays for which each servo would keep moving. This is because delay()
pauses the entire script and puts everything on hold. Since all servos needed to move for different lengths,
it would not be possible to delay the servos simultaneously.

Therefore, another idea was conceived: the servos would be moved to quantised levels. All servos would be
moved using delay() to the same level. Then, if any other servos needed to move any further, they would
be moved together to the next level. This
would continue until all servos were
approximately at their correct positions. This
method was dismissed because of the
inaccuracy and needless complexity that it
was found to bring to the device.

Then followed another method, which was to
use Arduino timing: the code would measure
the current time at every iteration of a loop
and calculate the time that had passed since
the servos had started moving. It would then
check whether the time requested had passed
for each servo and if it had would stop the
corresponding servo. The code for this method
is given in figure 33.

It is worth noting that the above code is only
for one PWM servo driver, since this idea did
not make it to the final design which used two drivers. When this method was used to draw graphs using
an early prototype of the device and a bench power supply, it was found to be ineffective due to two
reasons:

1. The time is calculated only once per iteration of the loop, which itself takes time. Due to this, the

distances servos travelled were extremely inaccurate and the graphs looked nothing like they were

supposed to, and

2. Even when the code was tested with only 10 servos, the device drew a very large amount of power,

and it was found that most affordable and portable battery packs would not be able to handle the load

produced by all 23 servos functioning simultaneously.

Figure 32 Arduino Sketch Constants

Figure 33 Simultaneous Servo Movement Function

Page 18

Due to the above reasons, the team decided to go with the simple, accurate Arduino delay() function,
which meant that each servo would need to be moved individually.

This is implemented in the function shown in figures 34 and 35.

4.4.2 Resetting the Servos (to the initial position)

Before drawing a graph, the servos must return to their initial positions
(the end of their strips, position 0). Since they cannot be controlled by
angle, the trivial reset method is to move each of them backwards for
MAXDELAY and force them all to reach the end. However, this
method does not consider that not all servos are at maximum position
when a graph is drawn. Servos that are close to the maximum position
will not cause problems but those closer to the initial position will stall
for the majority of that delay. As discussed earlier this will not cause an
issue immediately however it will significantly reduce the lifetime of the
servos and the device will begin to fail after short use.

As seen in the hardware, we implemented a sense resistor which showed
experimental results of approximately 700mA when the servo stalled. It

was later found via experimental use that 1Ω is the optimal value for
the sense resistor, since it represents the best balance between
measurable (much larger than electrical noise) and non-obstructive
(small enough to not cause noticeable power loss).

Since all servos are different, the script contains threshold calibration
functions that, assuming that the servos are already at the end of their
strips, move each of them backwards, continuously measure their

current spikes and save the smallest value in the Arduino’s EEPROM.

The functions are shown in figure 36.

After the thresholds are determined, the rest is handled by the reset
function. Each servo is moved backwards until the voltage drop
threshold is reached, which is when it is stopped.

Figure 34 Individual Servo Movement Function

Figure 35 Individual Servo Movement Function

Figure 36 Threshold Calibrating Functions

Figure 37 Servo Reset Function

Page 19

There are some problems with this method, two of which turned out to be significant enough that the
code was altered to accommodate for them. Below are some issues (determined during testing):

1. The servos need significant current to be accelerated from rest, because the static friction coefficients

of plastic and rubber (which are the materials that the gears, servo and timing belt are made from) are

higher than the dynamic ones. (Thus, the servos need to do more work to quickly accelerate the belts from

rest). This meant that the servos caused current spikes when being started and occasionally caused the

thresholds to be reached, stopping the servos immediately.

To resolve this issue, a delay of 10 milliseconds was introduced before the code starts checking for the
thresholds.

2. The current spikes were sometimes inconsistent, which occasionally resulted in the thresholds not

being reached, causing a servo to keep moving indefinitely.

This issue was resolved by reducing the thresholds by an appropriate amount which was empirically
determined.

The above issues were resolved successfully. Therefore, the team proceeded to use this approach when
resetting the servos on the final version of the product.

Although this method was a success, there was still a minor issue that could not be resolved:

▪ Over time with repeated usage, the resistance of the resistor changed, which interfered with the

current spikes, reducing the reliability of the system.

Other method such as setting a dynamic threshold were considered where the device will check for
changing and reform threshold detection. It was also considered to introduce feedback in software
considering temperature of the circuitry. These ideas was abandoned for the unneeded complexity. In the
end, this issue was resolved by using a higher quality resistor with a lower spread (due to temperature).

4.4.3 Calibration

 Every servo has a slightly different top speed. On top of this,
every belt has a slightly different tension and all gears are slightly
different. All these factors add up and cause severe imprecision
when drawing graphs. For this reason, calibration is required
when moving the servos.

Two ways of calibrating the servos were tested. The initial idea
was to use current spikes once more. Assuming that all servos are
at their maximum position, a function would move them back
until the current spike threshold was reached, and measure the
time taken for the servo to move the entire distance. Afterwards,
the time taken for the slowest servo would be recorded and used
to calibrate all other servos.

The functions used to do this are shown in figure 38:
calibrateServo calibrates a single servo n and saves its corresponding
calibration factor in an array. Here, calibrationTime is the time taken by the slowest servo.

Additionally, calibrateAll runs the calibration code for each servo by reading the correct thresholds from
memory and builds the calibration array.

In theory, this seemed perfect. However, due to the reliability issues associated with the current spike
sensing method, the servos did not always stop when required and the calibration array was incomplete
and/or inaccurate.

Figure 38 Servo Calibration Functions

Page 20

Due to this,
another
calibration
method was used.
This time, all
servos were

moved to position 0, and then code was written to move them to
50% of the length of their strips. Afterwards, the offset of each
servo from the exact 50% position was manually measured and
the differences were recorded. Then, an array consisting of
percentages of the offsets to the entire length of the strips was
created. This array is shown in figure 40.

When this array was constructed, it was used to modify the delay

of each servo. This was accomplished by subtracting each servo’s
calibration factor from its corresponding position when calling the
moveServo function.

At the end of the manual calibration process, the servos were
much better coordinated, and the graphs looked significantly more
accurate and smoother. Figure 41 contains an example of a graph

drawn with manual calibration; a gaussian graph is clearly visible.

Figure 40 Servo Calibration Functions Array

Figure 39 Servo Move Function Calls in
Setup() with calibration factors

Figure 41 Example Gaussian Wave plotted with
Calibration

Page 21

5 Project Management

5.1 Organisation of Work

The team was split into two technical groups: hardware
and software. Umut and Pavan were responsible for the
mechanical design with Alp, Omar and Kevin helping
with assembly. Issa oversaw power distribution. Lukas
developed the user application, and Arman created the
Arduino for controlling the motors. However, these roles
were not strict, especially in the final stages, where all
members worked on multiple parts, helped with assembly
and testing.

Regarding managerial positions, Lukas was the team
leader, who organized team meetings and oversaw the
progress of each subgroup. Alp was responsible for
managing the budget and inventory purchases. Arman and Kevin were responsible for keeping track of the
meetings and documentation.

The team held meetings every Tuesday, where team progress was shared, prototypes of mechanical pieces
and software were shown and discussed. Each meeting would end with a conclusion and agenda for the
upcoming week. Communication was done through WhatsApp, documents were stored on One Drive,
software files on GitHub.

5.2 Cost and Budget

Even though the total budget provided for the project was 450 pounds, the amount spent was around 380
pounds. After the hardware plan was done, it was decided that the majority of the spending will be on the
servo motors and the timing belts. The servo motors cost around 230 pounds whereas the timing belts
were around 85 pounds. As the number of servo motors and timing belts to be used was not
known definitely at the beginning, bulk purchase with a good deal was not possible, this contributed to an
increase in the total spent.

Apart from the budget reserved for the external orders, there was an opportunity to 3D-print pieces (e.g.
gears or rods for the belt) required for the prototype. Overall, the items purchased were researched in
detail and compared with their alternatives to give the best choice in the manner of cost and efficiency.
From our budget, we can see that we can potentially sell a device like this on the market for
approximately 300 GBP which is very impressive considering the existing range of aid equipment for Blind
people.

Please see the appendices for a detailed list of all purchases regarding our project.

5.3 Future Work

• Further miniaturisation

• Better mechanisms (Gap sensing for adjustable line width)

• Automatic graph sampling

Hardware: The hardware could see an improvement in the choice of motors from a servo motor that
works based on time delays, to a stepper motor that works based on number of rotations. This provides an
added accuracy that is not too depend on the accuracy of manufacturing and the power levels in battery
packs. The stepper motors in the form factor of a linear actuator.

Moreover, the current bread boards can be made into PCB boards to improve is durability and prevent
loss of signals due to lose wires. Additionally, a wireless Arduino could be introduced to allow the tutor to
teach multiple students at the same time. The device could also see further developments to add an on-
board memory to store past graphs and allow the user to input data, making the device more interactive
for the blind students.

Figure 42 Brainstorming session in early February

Page 22

Software: The user application can be improved further by adding higher-level mathematical functions,
such as rect(x), sgn(x), etc.

Furthermore, future versions should include the ability to sample and display any 2D graph, uploaded as

an image or other format. This way the device’s usage would extend to not just mathematical functions,
but also other graphs and charts, such as stock market graphs, oscilloscope readings and other uses.

In addition, the device should be shifted to be a standalone device for the blind person, such that an
assisting person is not needed. This would mean including many ease-of-access capabilities, such as text-
to-speech, inputs by voice, and other visual disability compliances.

5.4 Conclusion

In conclusion, the prototype was a success, with various
commonly used graphs being correctly translated and mapped
onto the device, meeting all the design specifications to a
satisfactory level. The high degree of accuracy and resolution
is accomplished through combining the thoughtfully designed
mechanical structure and large quantity of belt actuators with
a meticulously calibrated and well-coordinated control system
that accounts for all its inevitable imperfections. Versatility is
also achieved through a highly flexible user interface software
that enables a wide variety of graphs at different step sizes to
be represented through parsing.

Most importantly, it is also the first product of its kind, and
is also widely accessible, developed with a cost (300 GBP) unmatched by other products on the blind
assistance market. With additional improvements it could pave the way for a new niche of graphical
interpretation products for the blind to be created, and potentially become a long-term solution for
boosting education and job prospects among the blind.

Figure 43 Example Gaussian Wave plotted with
Calibration

Page 23

6 References

[1] L. U. G. Department, “Blindness and Visual Impairment,” [Online]. Available:
https://www.loc.gov/nls/resources/blindness-and-vision-impairment/devices-aids/braille-displays-
notetakers/ .

[2] National Federation of the Blind (NFB), “Blind Statistics regarding Education Levels,” January
2019. [Online]. Available: https://www.nfb.org/resources/blindness-statistics.

[3] R. N. I. o. t. B. U. (RNIB), “Key Information and Statistics on Sight loss in the UK,” 1 February
2018. [Online]. Available: https://www.rnib.org.uk/professionals/knowledge-and-research-hub/key-
information-and-statistics.

[4] W. H. Organisation, “Global Data on Visual Impairment 2010,” 1 December 2011. [Online].
Available: https://www.who.int/blindness/publications/globaldata/en/.

[5] TapTapSee App, “TapTapSee Application,” [Online]. Available: https://taptapseeapp.com/.
[Accessed 12 December 2019].

[6] R. N. I. o. t. B. Store, “Tiger SpotDot braille embosser printer - red,” [Online]. Available:
https://shop.rnib.org.uk/accessible-technology/note-taking-and-embossers/tiger-spotdot-braille-
embosser-printer-red.html. [Accessed 18 October 2019].

[7] R. N. I. o. t. B. Store, “Braille Sense U2 Mini Braille Notetaker,” [Online]. Available:
https://shop.rnib.org.uk/accessible-technology/note-taking-and-embossers/braille-sense-u2-mini-
braille-notetaker.html. [Accessed 18 October 2019].

[8] FeeTech, “FS90R Continous Servo Datasheet,” [Online]. Available:
https://media.digikey.com/pdf/Data%20Sheets/Adafruit%20PDFs/2442_Web.pdf. [Accessed March
2020].

[9] Rapid Electronis, “Feetech FS90R Motors,” [Online]. Available:
https://www.rapidonline.com/feetech-fs90r-360-continuous-rotation-micro-servo-37-1335. [Accessed
25 March 2020].

[10] P. Printables, “Potent Printables YouTube Video,” Potent Printables, [Online]. Available:
https://www.youtube.com/watch?v=2vAoOYF3m8U&feature=youtu.be) . [Accessed 2020 February
27].

[11] Electron JS, “Electron JS Homepage,” [Online]. Available: https://www.electronjs.org/.

[12] Chromium Organisation, “Open Source Chromium Webpages,” [Online]. Available:
https://www.chromium.org/.

[13] NodeJS, “NodeJS Opensource Homepage,” [Online]. Available: https://nodejs.org/.

[14] ReactJS, “ReactJS Homepage,” [Online]. Available: https://reactjs.org/. [Accessed March 2020].

[15] Material UI, “Material UI Homepages,” [Online]. Available: https://material-ui.com/. [Accessed
March 2020].

[16] E. React, “Electron React Boilerplate Source Files,” [Online]. Available: https://github.com/electron-
react-boilerplate/electron-react-boilerplate.

[17] Team 7 Group Project, “Visual Access System Source Files,” [Online]. Available:
https://github.com/saucena/blind-app. [Accessed 20 March 2020].

Page 24

[18] Bugwheels94, “Math Expression Evaluator Github,” [Online]. Available:
https://github.com/bugwheels94/math-expression-evaluator.

[19] Plotly, “Plotly Home Page,” [Online]. Available: https://plotly.com/.

[20] Arduino, “Arduino CLI Github Respository,” [Online]. Available:
https://github.com/arduino/arduino-cli.

[21] D. Darling, “Type Writer Mechanism in Use,” [Online]. Available:
https://www.daviddarling.info/encyclopedia/L/lever.html. [Accessed February 2020].

[22] M. Richmond, Artist, Conveyor Belt Analogy. [Art]. Simon Tulloch Figure.

[23] B. Siber, “Which 3D Printing Belt to consider,” [Online]. Available: https://all3dp.com/2/3d-printer-
belt-what-to-consider-and-which-to-buy/. [Accessed 15 March 2020].

Page 25

7 Appendix

Below is some additional reading material for this report.

Final Device Pictures

Awaiting!

Appendix Figure 2 Final Device (Plastic)

Appendix Figure 1 Back of Device

Page 26

Appendix Figure 4 Back and Front of the Sides

Appendix Figure 3 Left and Right of the Sides

Page 27

Wooden Prototype Device Pictures

Wooden and Plastic Comparisons. A wooden prototype was constructed before the final plastic version.
Top prototype is wooden whereas the bottom one is the final plastic one.

Appendix Figure 7 Right Side of Device

Appendix Figure 6 Left Side of Device

Appendix Figure 5 Top of Device

Page 28

Gear and Rod Design

The gear was designed to mimic that of a 3D printer gear, and it was also designed to be printed with no
supports, hence it was split into two parts the gear and the lid with an inter-locking mechanism shown
below.

Both the lid and the gear have different diameter openings which allows it to be dual purposed. The smaller
diameter allows for it to be screwed into the servo and the larger opening allows it to freely rotate on the
rod. The rod is designed to have four screw points a T shaped base for support to withstand the tension
exerted by the tighten belt. The rod additionally has a fillet transition between the protruding surface and
the T shaped base, to add some rigidity to the design shown in Appendix Figure 2.

Calculating the Step-size Limit

An increase in step size would imply a larger sampling interval, which implies a lower sampling frequency.
With the number of samples remaining constant at 23, the sampling window is also larger, leading to more
cycles of the same graph displayed.

Therefore, increasing the step size for the same sine wave (or zooming out) directly corresponds to
increasing the frequency of the sine wave for the same step size, with both leading to the same displayed
output.

Appendix Figure 9 Interlocking Mechanism Appendix Figure 8 T
Shaped Shaft

Appendix Figure 10 The boundary of step sizes

Page 29

When the frequency of the sine wave is increased by four times for the same step size as shown on the
right, the graph starts to lose its precision as large, irregular changes start occurring between points,
making it difficult for a blind person to capture every detail of the graph. This also corresponds to a step
size four times the original, which is 1.092, and is therefore recommended maximum step size for any

graph with period 2𝜋.

Sinc(x) of different Step Sizes

Other Examples of Graphs of different Step Sizes

Appendix Figure 16 1/(x-0.1) Appendix Figure 14 (x-2)(x-5) Appendix Figure 15 Log(x)

Appendix Figure 13 Step Size = 3 Appendix Figure 13 Step Size = 1 Appendix Figure 13 Step Size = 0.7

Page 30

Different Operations and Functions available in the used Parser.

Operator/Function Description

+ Addition operator
- Subtraction operator
/ Division operator
* Multiplication operator
(Opening parenthesis
) Closing parenthesis
pi Math constant pi returns 3.14
e Math constant e returns 2.71
log Logarithmic function with base 10
ln Natural log function with base e
^ Power operator
root Square root function
sin Sine function
cos Cosine function
tan Tangent function
asin Inverse Sine function
acos Inverse Cosine function
atan Inverse Tangent function
sinh Hyperbolic Sine function
cosh Hyperbolic Cosine function
tanh Hyperbolic Tangent function
asinh Inverse Hyperbolic Sine function
acosh Inverse Hyperbolic Cosine function
atanh Inverse Hyperbolic Tangent function

Page 31

Budget Sheet Exports

Appendix Figure 17 External Orders

Appendix Figure 19 Funds Spent outside of Budget

Appendix Figure 18 3D Printing in the 5th Floor EEE Labs

Page 32

Final Gantt Chart

Appendix Figure 21 General 3D Printing from the EE2 Labs (Ground Floor)

Appendix Figure 20 Final Gantt Chart

